The Stationary Navier-stokes System in Nonsmooth Manifolds: the Poisson Problem in Lipschitz and C Domains

نویسندگان

  • MARTIN DINDOŠ
  • MARIUS MITREA
چکیده

In this paper we study the linearized version of the stationary Navier-Stokes equations on a fixed subdomain Ω of a smooth, compact Riemannian manifold M . Let Tr denote the trace on ∂Ω. With Def standing for the deformation tensor and with d denoting the exterior derivative operator on M , set L = 2 Def∗Def, δ = d∗. We consider the Dirichlet problem for the (modified) Stokes system    Lu+∇ωu+ dπ = f ∈ Lps+ 1 p −2(Ω,Λ TM), δu = h ∈ L s+ 1 p −1(Ω), Tru = g ∈ B s (∂Ω,ΛTM). (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Navier-Stokes Equations on Lipschitz Domains in Riemannian Manifolds

The Navier-Stokes equations are a system of nonlinear evolution equations modeling the flow of a viscous, incompressible fluid. One ingredient in the analysis of this system is the stationary, linear system known as the Stokes system, a boundary value problem (BVP) that will be described in detail in the next section. Layer potential methods in smoothly bounded domains in Euclidean space have p...

متن کامل

The Initial Dirichlet Boundary Value Problem for General Second Order Parabolic Systems in Nonsmooth Manifolds

In a series of recent papers [1], [2], [3], [4], [5] we have initiated the study of boundary value problems for (variable coefficients, second order, strongly) elliptic PDE’s in nonsmooth subdomains of Riemannian manifolds via integral equation methods. Here we take the first steps in the direction of extending this theory to initial boundary value problems (IBV P ’s) for variable coefficient (...

متن کامل

Shape optimization for stationary Navier -

Abstract: This work discusses geometric optimization problems governed by stationary Navier-Stokes equations. Optimal domains are proved to exist under the assumption that the family of admissible domains is bounded and satisfies the Lipschitz condition with a uniform constant, and in the absence of the uniqueness property for the state system. Through the parametrization of the admissible shap...

متن کامل

State-Constrained Optimal Control of the Stationary Navier-Stokes Equations

In this paper, the optimal control problem of the stationary Navier-Stokes equations in the presence of state constraints is investigated. We prove the existence of an optimal solution and derive first order necessary optimality conditions. The regularity of the adjoint state and the state constraint multiplier is also studied. Finally, the Lipschitz stability of the optimal control, state and ...

متن کامل

Estimates for the Stokes Operator in Lipschitz Domains

We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003